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Determination of Emissions from Open Burning of Agricultural and Forestry Wastes:
Flame Characterization

Sensitivity of Flame Structure and Particulate Matter Emissions to the
Operating Configurations of a Combustion Wind Tunnel

Abstract

Particulate matter (PM) emissions and flame structure were investigated for spreading fires
in a combustion wind tunnel using rice straw. Four operating configurations were
investigated. The wind tunnel configuration was modified by extending or retracting an
overhead adjustable ceiling, and by adding or removing a sheet steel floor directly
underneath the fuel bed. PM emission factor varied from 0.7% of fuel mass fora2 m s-!
wind speed and a configuration in which the ceiling was retracted and the floor was
removed, to a low of 0.5% for a 3 m s-1 wind speed with the floor added and the ceiling
extended to just ahead of the flame. Flame structure was examined through measurements
of local temperatures, gas concentrations, and soot volume, the latter obtained by laser light
extinction. Flame temperature profiles were altered substantially by changing wind speed
and ceiling position, but peak flame temperatures were similar. Wind speed was a
dominant parameter affecting the emission of particles. Higher wind speeds gave greater
mixing rates, with reduced flame lengths and flame residence times, and lower soot
formation and PM emission. The floor was also observed to significantly influence particle
emissions, possibly by restricting air flow through the smolder zone behind the fire,
decreasing particle emission when present. Ceiling position by itself was not observed to
significantly affect particle emission factor. Retracting the ceiling decreased streamwise air
velocities and increased vertical velocities at the fire. Inlet velocity profiles with the ceiling
retracted at Jow wind speed were distinctively different than at higher speeds or with the
ceiling extended, suggesting flow separation due to an extremely adverse pressure gradient.
Local turbulence intensities in the boundary layer were comparable with reported field
values, as were surface roughness heights and friction velocities for the ceiling extended
and the higher wind speed ceiling retracted configurations. Future experiments with
spreading fires should make use of the ceiling extended high wind speed and ceiling
retracted low wind speed configurations to evaluate the variability induced by the wind
tunnel in emission factors of other species and with different fuels. Average values should
be suitable for determinations of emission offset allowances.
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Kext

empirical constant of King's law equation
empirical constant of King's law equation

particle diameter
distance from fire front to flame radiation sensor

diffusivity

Damkéhler number

spectral energy

corrected voltage based on temperature of anemometer
uncorrected voltage signal from anemometer
turbulence kinetic energy

frequency

sampling frequency

attenuated light intensity as photodiode output
imaginary part of complex number

unattenuated light intensity as photodiode output
local streamwise turbulence intensity

local vertical turbulence intensity

sample number

extinction coefficient

integral length scale

path length for laser light (width of tunnel)

mass median aerodynamic diameter

refractive index of particles

total number of samples
particle concentration

Nusselt number

empirical constant of King's law equation
Reynolds number based on integral length scale
Reynolds stress

autocorrelation coefficient on v’

separation distance

time

calibration air temperature for anemometer

air temperature at anemometer during testing
anemometer wire temperature

N m-2

A AN R “ 3
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Introduction

In 1983, California enacted legislation (AB 1223) allowing emission offset credits to
facilities that would burn agricultural and forest biomass (crop and forest residues) for the
generation of steam and electricity. In enacting AB 1223, the legislature recognized the
potential for reducing air pollution from the open burning of waste materials when these
same materials are used as fuel for power plants. Each year, farmers burn approximately
1.7 x 10 metric tons (dry basis) of crop residues in the state (1, 2). Many types of crop
residues are burned, but the most important contributions to air pollution come from rice
straw, almond and walnut tree prunings, and wheat straw, which together account for
about 95% of the agricultural biomass burned (1). More recent legislation restricts the
amount of rice straw which can be burned in the field, but retains the emission offset
allowance for facilities that use it as fuel.

The procedure for determining the emission offset credits developed under the initial
legislation has subsequently been modified, but it still involves the use of so-called
emission factors for each type of fuel considered by each facility. For each pollutant, a
quantity expressing the mass of pollutant emitted per unit mass of fuel burned (called the
emission factor) is required for the procedure. Darley (3, 4, 5) used a laboratory burning
tower to obtain estimates of pollutant emission factors for a large number of crop residues.
Emission factors have also been reported in the compilation by EPA (6). Some uncertainty
exists in these laboratory results because of the high temperatures maintained in the
sampling duct above the fire, and because of the small quantity of fuel burned. Field
studies (e.g. 7, 8, 9) rely on elemental mass balances (generally carbon balances) to relate
pollutant concentrations measured in the sample volume to the mass of fuel burned, and so
to determine the emission factors. Emission factors determined in this way are sensitive to
the concentration of CO; measured in the plume of the fire, and this is one of the reasons
that results from field studies vary widely.

To update pollutant emission factors, a combustion wind tunnel was developed at UC
Davis (10, 11). The emission factors are determined directly, and the tunnel allows
different inlet air flow rates and velocity profiles to be used. A system of conveyors
continuously moving fuel into the fire zone provides extended sampling times when testing
spreading fires. As with Darley's experiments, a full simulation of the field conditions is
not possibie in the wind tunnel. There are several features of the design, however, which
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can be adjusted to change the operating configuration of the wind tunnel. This report
describes a series of experiments conducted to assess the effect of the different
configurations on the fire structure and particulate matter emissions for a fire spreading
through rice straw. In trying to assess the effect of the tunnel configurations on the fire
behavior, one objective was 1o try to retain fuel properties, loading rate, and bed structure
constant. The results reported here were therefore intended to pertain to the variations in
particulate matter emission rates due to changes in the wind tunnel configuration, and not to
changes in the fuel condition (e.g. moisture content).

The wind tunnel is an open-circuit, forced-draft type consisting of a fuel feed table, inlet
section, combustion test section, and stack sampling section. The air flow is produced by a
45 kW centrifugal blower. Maximum air speeds (duct flow rate divided by duct area) of 10
m 51 are possible, but in the set of tests described here, speeds under 4 m s'! were used.
Such velocities were found in field measurements to be typical of the average wind velocity
in the first 1 m above the straw layer during open burning (10). The tunnel flow is
straightened with a series of wire mesh screens located downstream of the blower. Details
of the tunnel construction are given in (10). A schematic of the wind tunnel appears in
Figure 1.

The conveyor system is used with spreading fires to translate the fuel bed downstream at a
rate equal to the upstream fire spreading rate. The wind tunnel has so far only been used to
simulate fires spreading against the wind ("backing" fires). Wind-aided fires ("heading”
fires) generally spread at rates in excess of the maximum speed of the conveyor, and there
is no provision to load fuel for fires of this type. The opposed flow condition is consistent
with state regulations concerning field burning, although in practice many fields are burned
with some combination of backing and heading fires. The wind tunnel is therefore limited
in the extent to which it can simulate actual field conditions. Fields are not normally burned
by a single fire line spreading upwind, as the spreading rates are rather slow, and the burn
duration long. Instead, multiple fire lines are lit parallel to the wind direction (strip light),
so that the fires spread principally in opposition to the wind but the total length of time to
burn the field is reduced considerably.

The simulation is also limited by how well the fuel bed structure in the tunnel compares
with that in the field. No attempt was made to try to reproduce all the possible fuel bed
conditions found in the field. Instead, two configurations of the wind tunnel floor beneath
the fuel bed were used to represent the cases of a straw layer resting on top of uncut

12
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stubble, and the straw layer resting on the ground, as when the harvester is cutting in
lodged or down rice.

Two conveyors are used in the tunnel. In the inlet flow development section, a flexible belt
conveyor extends from the fuel loading table, where it is exposed for loading, to the
junction with the combustion test section. This conveyor passes under the blower and flow
straightening section, and joins the air flow 8 hydraulic diameters upstream of the
combustion test section. At the front of the combustion test section, the fuel is transferred
to a stainless steel rod conveyor that runs the full length of the test section. The fuel is
burned on this conveyor. Both conveyors are driven at the same linear speed by a single
variable speed DC motor. The rod conveyor is located 150 mm above a refractory brick
floor, and unloads into an ash bin at the end of the combustion test section. Ash is
removed from the bin by a motor driven auger emptying into a collection bag. The rod
conveyor returns to the front of the combustion test section underneath the tunnel floor.
Twelve windows are located along the length of the combustion test section on each side,
and there is one window in the rear wall. Lower pairs of windows along the sides are
located in doors hinged at the top. Access to the test section is through these doors.

A movable ceiling extends horizontally into the combustion test section from the front wall
and can be positioned anywhere along the test section to aid in shaping the inlet velocity
profile. The inlet section is 1.2 m square, and the ceiling is located at a height just above
the top of the inlet section. A schematic of the conveyor and ceiling arrangement is given
in Figure 2.

Above the test section, the stack tapers upwards in two stages to a final 1.2 m square Cross
section. The sampling plane is approximately 9.8 m above the top surface of the rod
conveyor, and is located 2 duct widths downstream and 0.5 duct widths upstream from the
nearest flow disturbance. Stack samples are collected with a track-mounted traversing
platform (Figure 1).

Wind Tunnel Configurations
The operating configurations of the wind tunnel were altered by adjusting the position of
the movable ceiling above the fire, and by installing a sheet metal floor direcdy beneath the

fuel bed and rod conveyor to block ventilation from below. With these two adjustments,
four configurations were possible:

15



1) ceiling extended downstream to the front or leading edge of the fire, with no
floor installed between the fuel bed and the refractory brick (designated CENF for ceiling
extended, no floor), ' -

2) ceiling retracted to the front wall of the combustion test section, with no floor
installed (designated CRNF for ceiling retracted, no floor),

-3) ceiling extended to the front edge of the fire, with the floor installed beneath the
fuel bed from the entrance of the combustion test section to approximately 4 m downstream
of the entrance (designated CEWF for ceiling extended, with floor), and

4) ceiling retracted to the front wall, with the floor instalied (designated CRWF for
ceiling retracted, with floor).

Two wind speeds were also tested--a low wind speed of about 2 m s-1, and a higher wind
speed of 3 to 3.5 m 571, where the wind speed is the superficial velocity in the inlet duct,
i.e., the volumetric flow rate divided by the duct cross sectional area. The air flow rate was
adjusted by changing the vane angle and effective aperture on the inlet vanes of the blower.
For each experiment, the fire was either held at the second window, approximately 2 m
downstream of the entrance to the combustion test section, or was allowed to spread
upstream from the third window to the first window, approximately 3.5 to 1 m from the
test section entrance (Figure 1).

Materials and Procedures

For each operating configuration, measurements were made to describe the approach flow,
flame structure, and particulate emissions. The approach flow velocity profiles and
turbulence characteristics were determined using a two-wire x-probe type hot-film
anemometer. Particulate matter (PM) concentrations were determined using an in-stack
sampling method based on CARB method 17 (12). Particle size distribution was
determined with a cascade impactor, also used in-stack. Flame structure was analyzed by
measuring flame temperatures, flame radiation, and local gas concentrations. Average line-
of-sight soot volume concentrations were determined by laser light extinction through the
flame and post-flame regions. Fuel moisture content and residual ash weight were
determined for each experiment. Fuel loading rate was constant at 680 g m-2 wet basis.
Inlet air temperature and relative humidity, conveyor speed, stack gas velocity, and stack
gas lemperature were continuously recorded.



Due to instrument limitations, not all measurements could be made simultaneously, and
repeated tests were conducted with all controlled variables held constant. Measurements of
PM and operating parameters were always taken, the PM results serving as a means of
evaluating repeatability. Each test was replicated. A total of 64 experiments were
conducted, 19 in the CRNF configuration, 17 in the CENF configuration, 15 in the CEWF
configuration, and 13 in the CRWF configuration.

Inlet velocity profiles and turbulence characteristics:

A two-axis, x-probe type hot-film anemometer (TSI model 1246-20, St. Paul, MN)*
coupled to two anemometer signal conditioners (Dantec model 56C17, Skovlunde,
Denmark) was used to measure the inlet flow field along vertical center lines at two separate
positions upstream of the fire. The first vertical traverse was taken 120 mm upstream of
the front or leading edge of the fire. A second vertical traverse was made approximately
600 mm upstream of the leading edge of the fire. The first position closest to the fire was
designated the downstream position, while the second position was designated the
upstream position. The absolute positions of the probe were in all cases the same. The
two positions are illustrated in Figure 3. At the downstream position with a fire present in
the tunnel, the flow could not be probed near the fuel surface because of possible damage
to the anemometer caused by the flame. Velocity measurements were also made in cold
flow without the fire present, with the probe at the same absolute positions, and in this case
descending to the fuel surface at the downstream position. The probe was oriented to
measure both the streamwise and vertical velocity components of the flow. Full details of
the procedures used are included in (13).

The anemometer was routinely calibrated over a range of 0.15 10 5.5 m s with a bench top
calibration wind tunnel (TSI model 8390, St. Paul, MN). Analog outputs from the signal
conditioners were converted to digital form by a 12 bit A/D board (GW Instruments model
Macadios II Se, Somerville, MA) and stored on a microcompulter. The voltage signal was
converted to velocity by fitting a King's law equation:

E? = a+bu (1]

* Mention of specific products or tradenames does not constitute an endorsement by the University of
California.
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where E;j is the voltage, a,b, and n are empirical constants, and u; is the velocity in the ith
direction. Separate equations were determined and used for each velocity component.
Temperature at the probe was monitored with a bare bead, Inconel clad (0.5 mm diameter)
type K (chromel-alumel) thermocouple placed 20 mm downstream of the tip. A corrected
transducer voltage was computed from the deviation of actual air temperature from
calibration air temperature as:

Adjustable Ceiling

. . Upstream  Downstream
Combustion Test Section Front Wall =—— Position Position

Entrance Duct FN—— Anemometer Probe

—.
Air Flow
——
0.48 m Flame

————-

Fuel Bed

N

Y Y Yy S Ny Ny Y Y S Y F U XYY Y Y Yy YA Y X ¥ 3 e e ——

/ e e

Flexible Fusi Conveyor

7
Stainless Rod Conveyor /

Figure 3. Longitudinal schematic of wind tunnel showing approximate upstream and
downstream positions used for anemometer probe traverses.

1/2

T.-T

E, =(-—-—;. ;"’) E; [2]
s 1e

where Egj is the temperature corrected voltage, Ej is the original uncorrected voltage, Ty is
the sensor temperature (250°C), Tca is the air temperature during calibration, and Te is the
test air temperature. After correcting for temperature, the streamwise and vertical velocities
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were computed from vector sums on the effective velocities normal to each wire. For all
tests, Tca) remained nearly constant at 27°C, and T, varied between 19 and 42°C.

The anemometer probe was mounted facing upstream on the vertical arm of a stepper motor
controlled positioning system capable of traversing the height of the combustion test section
up to 1.2 m and 0.48 m in the streamwise direction (see Figure 3). Each traverse consisted
of 15 to 18 sample locations spaced from 0.09 to 1.2 m above the surface of the rod
conveyor (see Figures 7 and 8 for actual positions). The lowest point sampled was
normally 30 to 60 mm above the mean fuel surface. Individual fuel elements often
extended above this height, and care had to be taken to avoid breaking the wires on these
fuel pieces when the conveyors were moving. At each location, a burst of 8,500 samples
from each channel was acquired at 2.2 kHz for approximately 3.9 seconds. The sampling
rate was selected to be in excess of the Nyquist criterion based on the frequency spectrum
of the flow obtained initially on a Wavetek model 5820B spectrum analyzer (see also
frequency spectra in results section). For the velocities tested, the highest observed
frequency was in the neighborhood of 800 Hz. The sampling time was adequate to yield
average velocities deviating less than one percent from sampling times greater than five
seconds. Computer memory limitations required transferring data from each burst to disk
before starting another burst. The sampling time was selected to enable a traverse to be
completed in a reasonably short interval (~0.5 h). Replicated traverses were made at each
position for each of the configurations, each of the two wind speeds, with and without a
fire present in the wind tunnel. Mean velocities and local turbulence intensities were
computed at each sampling location for both the streamwise and vertical directions. The
turbulence intensities were computed in the normal manner whereby the instantaneous
velocity is decomposed into a mean velocity and fluctuation:

w(jy=u(j)-U (31

v()=v(j)-V (4]

where u (j) and v (j) are the streamwise and vertical instantaneous velocities, respectively,

at sample number j, U and V are the time averaged quantities of u(j) and v{j), respectively,

and v'(j) and v'(j) are the fluctuations from the means. The turbulence intensity is defined
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for each velocity component as the root mean square of the fluctuations referenced to a

characteristic mean flow velocity. In the streamwise direction,

—\1/2
(ww)
Iy = T (3]
and in the vertical direction,
—\1/2
(V)
fy= [6]

where Iy; and Iy are the streamwise and vertical turbulence intensities, respectively. The

overbar denotes the time average of the quantity. Thus,

Py — [7]

where N is the number of data points in the sample (N=8500). The turbulence intensities
given by equation [5] and [6] are referred 10 as local turbulence intensities because U is the
local average streamwise velocity measured at the same time and location as the

fluctuations.

The Reynolds stress was calculated from the streamwise and vertical velocity fluctuations

for the purposes of estimating boundary layer thickness,

R =—-pu'v [8]
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Estimates of the aerodynamic roughness height, z,, and friction velocity, u*, were also
made. In the overlap layer, between the wall layer and outer layer of the boundary flow, a
logarithmic law-of-the-wall model describes the velocity:

k 2
where k is von Karman's constant, k=0.41, and z is the height. When the measured
velocities are plotted against In(z), and a line is fit through the portion of the profile near the
fuel surface, the friction velocity, u*, is determined from the slope and the roughness
height, z,, is determined from the intercept.

Energy spectra were derived from fast Fourier transforms (FFT) of the velocity data.
Measures of the integral length scales of wind tunnel turbulence were derived from
autocorrelations of the same data. The energy spectra were determined as functions of the
longitudinal wavenumber, ¥j (m-1),

_2nf

K= 7 [10]
where f is the frequency (s-!) of the turbulent fluctuations given from the FFT. The lower
values of k) represent long wavelengths or large eddies, which contain most of the energy,
and this region is generally classified as the production range in a typical energy spectrum
(14). The integral length scale is associated with the wavenumber at the peak energy in this
range. The viscous dissipation range occurs at high wavenumbers. The Kolmogorov
length scale, n, is found in this range. Intermediate to these two ranges is the inertial
subrange. The energy, E, in this range is proportional to x;-3/3, and a plot of In(E) against
In(x)) should yield a -5/3 slope if the turbulence is well developed.

The integral length can also be found from an autocorrelation on the longitudinal velocity
fluctuation through application of Taylor's hypothesis (15). The autocorrelation
coefficient, Ryy(T) on u' was computed as

u(x; = 0,00 (x; =0, 4 7)

Ryy(t)= [11]
u'u (o_u‘)z
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where t is time (s), and 7 is the time lag equal fo j/f where j is the sample number from the
start of sampling, and f; is the sampling frequency (s-1). The parameter x defines the
longitudinal position of the probe, which in this case was invariant for each sampling
position. The parameter Oy is the standard deviation of the longitudinal velocity
fluctuation, u'. The time lag is related to the separation in space, r (m), under the
assumption of frozen turbulence by Taylor's hypothesis, r = Ut. The integral length scale
was computed by integrating equation [11] over r up to the first zero crossing for Ry
positive. Ry is by definition unity at zero lag.

Particulate matter and particle size distribution:

Emission factors for particulate matter (PM) were used to measure gross changes in
emission characteristics as a result of changes in the wind tunnel operating configuration.
PM was determined in a manner similar to that described under the California Air
Resources Board Method 17 in-stack sampling protocol (12). The test procedure deviated
from the standard method in two aspects. The stack traverse utilized a smaller number of
traverse points than called for by CARB Method 1 (referred to by Method 17), and the
weight of PM cleaned from the probe nozzle was not determined after initial attempts failed
to recover accurately measurable amounts. The nozzle was simply cleaned between runs.
Particle size distribution was determined using a cascade impactor (Sierra Instruments
model 228, Carmel Valley, CA) in the stack.

The stack cross section was divided into twelve equal rectangular areas each 305 mm by
406 mm. Although for the conditions of the stack CARB Method 1 specifies 24 or 25
traverse points, twelve was thought to be adequate for these relative comparisons after
testing against a single point measurement at the center of the stack. Because the flow was
fully turbulent in the stack, PM concentration was rather uniform across the stack. Two
tests on two different days of the 12 point traverse against a single center point
measurement on 48 minute runs produced concentrations of 10.05 and 12.61 mg m-3 for
the traverse and 10.35 and 12.59 mg m-3 for the single point determination. The values
appeared to be quite close given the variability in fire conditions that can occur between
runs.

Samples were drawn at the center of each area, with 4 longitudinal positions and 3

transverse positions. The PM and cascade impactor probes, along with a type-K
thermocouple (ungrounded, Inconel sheathed with 1.5 mm outside diameter) for
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mohitoring stack gas temperature and a single axis hot-film anemometer (Kurz Instruments
model 455, Carmel Valley, CA) for monitoring stack gas velocity, were carried on.a 100
mm by 75 mm rectangular steel beam which could be extended into the tunnel from the side
wall. The beam itself was carried on a rail at the wall and could be moved along the wall.
By moving the beam longitudinally and extending it transversely, the probes could be
positioned at the different traverse points in the stack. When fully extended to the
innermost traverse points, the beam and probes occupied less than 5% of the stack area. A
sheet steel curtain moving with the beam kept the stack wall closed against gas leakage at all
probe positions.

The PM probe consisted of a 12.7 mm stainless steel tube extending through the beam to
which a 47 mm stainless steel filter holder and stainless steel buttonhook nozzle were
attached. The inside diameter of the nozzle was 9.5 mm. A teflon tube was attached
between the outer end of the stainless tube and the inlet of an impinger train. The
impingers were connected through a check valve to an air tight sample pump, dry test
meter, and mass flow meter. A thermocouple was used to continuously record impinger
outlet temperature. The system was leak checked with each test. A vacuum gauge was
connected ahead of the pump to monitor filter pressure drop. The standard S-type pitot
tube was replaced with the calibrated hot film anemometer because the flow dynamic
pressure was too low to accurately gauge gas velocity. The stack velocity was observed
manually by the operator at the sampling platform, and was also continuously recorded
electronically. This anemometer was calibrated when clean, and checked after operating in
the stack flow. The probe retained calibration within 0.3% over all 64 tests. The probe
operator read stack velocity and manually adjusted probe flow rate to maintain isokinetic
conditions.

The cascade impactor was mounted alongside the PM probe, and also employed a stainless
steel buttonhook nozzle. The nozzle inside diameter was 12.7 mm. Clearances between all
probes were maintained in accordance with CARB method 2 (12). The outlet of the
cascade impactor was connected to a stainless steel tube passing through the carrier beam, a
desiccant column, air tight sample pump, dry test meter, and orifice meter. This system
was also leak checked with each test. As with the PM probe, the operator adjusted flow to
maintain isokinetic conditions.

Typical flow rates were 10 L min-! for the PM probe, and 20 L min-1 for the impactor. PM
samples were collected on weighed, desiccated, glass fiber filters (Gelman Sciences type
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A/E, Ann Arbor, MI). Coalted stainless stee] membranes were used as collection surfaces
in seven stages of the cascade impactor, with a glass fiber final filter. Total sampling
duration was 48 minutes, with 4 minutes at each traverse location. After each 48 minute
run, filters were removed, sealed in plastic filter cases, and taken to the laboratory. Filters
were desiccated for 24 hours, and weighed.

Time-temperature histories of the flame:

Time-temperature histories of the fires for each of the four configurations and each wind
speed were obtained by allowing the fire to burn past a stationary vertical array of
thermocouples. In the case of the ceiling extended configurations, the ceiling was moved
manually to follow the fire.

The array consisted of 5 thermocouples spaced uniformly upwards at intervals of 127 mm
with the first thermocouple placed on the fuel surface (Figure 4). The array was located
2 m downstream of the entrance to the combustion test section at the trailing edge of the
second window. Each thermocouple was hung on a vertical 12 mm diameter mild steel rod
and projected horizontally outwards 150 mm from the rod to the center of the tunnel. The
rod was bent 90° above the highest thermocouple and extended through the side wall to a
fixed outside support. Exposed-bead, Inconel clad, type-K (chromel-alumel)
thermocouples made from 125 pm diameter wires were used. The time constants of these
thermocouples were too large (approximately 150 ms) to gauge true flame temperatures,
but they gave representative measures of flame position. No melting of the thermocouples
was experienced because of averaging effects as the temperature fluctuated between
ambient and flame in the turbulent flow.

To conduct a test run, the thermocouple array was lifted off the fuel surface and the
conveyor speed was increased to move the fire downstream of the array (to a position
approximately 3.5 m downstream of the entrance to the combustion test section of the
tunnel). The conveyor drive motor was stopped, the array positioned, and the fire allowed
to spread upstream. At the same time, the data acquisition system was started to record
temperatures on all five thermocouples. Thermocouples were sampled at 30 Hz using the
same data acquisition system described for the anemometer. The run was stopped when
the fire had passed the array or when it had come to within 0.5 m of the flexible conveyor.
Temperature data were later compiled into contour and surface plots displaying approximate
flame shape. No corrections were made for radiation or conduction.
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Figure 4. View across wind tunnel showing location of thermocouples in array.

Local flame temperatures:

A fast response, type-R (PUPt+13% Rh) thermocouple was used to measure local flame
temperatures. This thermocouple was of the exposed-bead type, constructed of 25 um
diameter wires, with a bead diameter of approximately 40 um and an estimated time
constant of 5 ms. The wire was strung through 5 mm diameter ceramic insulating beads
which in turn were inserted through a 6 mm diameter stainless steel tube for support. The
wire and bead extended approximately 20 mm from the end of the ceramic insulator. The
assembly was inserted through the side wall of the tunnel into the flame to a depth of 0.4 m
from the wall and fixed in position while the temperature was monitored. Vertical traverses
2 m downstream from the entrance to the combustion test section were completed by
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moving the fire into position with the conveyor, and keeping it in position by adjusting
conveyor speed as needed. The probe height was adjusted manual]y. The flame

_temperature was probed from the flame tip downwards to the fuel surface through the flame
center, and behind the flame over a region of glowing combustion in the char bed.

At each position, the probe was sampled for six seconds at 1 kHz using the same data
acquisition system described above for the anemometer. Relative frequency densities were
computed from each data file using a 50 K interval width. No radiation or conduction
corrections were applied to the temperature measurements. Difficulties with using
thermocouples in sooting flames are well known, and the results are qualitative in nature.
They do serve for purposes of comparing the relative differences among the temperature
fields of the various configurations. The error due to radiation is estimated to be in the
range of 20 to 100 K at a thermocouple temperature of 1670 K (about the highest
measured) and a wall temperature of 300 K with an assumed Nusselt number, Nu = 2, and
emittance varying from 0.2 to 0.95 (16,17). Actual instantaneous peak flame temperatures
are higher than reported due to heat losses and to the finite response time of the probe
which was subject to rapid fluctuations in temperature as the flame moved in the turbulent
flow.

Flame radiation:

Flame radiation was measured from a position above and in front of the flame as shown in
Figure 5. A water-cooled, gas purged Schmidi-Boelter type sensor (Medtherm model 64-
01-22, Huntsville, AL) was used. The sensor and pre-amplifier were installed in a water
cooled aluminum case fixed on the end of a 25 mm steel square tube inserted through the
side wall of the tunnel. The transducer view angle was 150°, centered on the fuel surface
2 m downstream from the entrance to the combustion test section. The view angle was
large enough to see the entire flame up to positions directly beneath the sensor, although the
fire was never run this far forward when measuring flame radiation. With the ceiling
retracted, the sensor view included about 55 m? of wind tunnel wall area.

The pre-amplifier output was connected to a signal conditioner which boosted the voltage
signal to an acceptable range for the data acquisition system described previously. The
radiation sensor was read simultaneously with the type-R thermocouple, and at the same
sampling rate of 1 kHz. This rate was well in excess of that required for this transducer,
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which had a time constant of approximately 1.5 s. The distance of the flame from the
sensor varied as the sampling position for the type-R thermocouple was changed.

Radiation sensor d
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Figure 5. Location of radiation sensor.

The longitudinal separation of the leading edge of the fire from the sensor position was
recorded at each sample. The separation, D, from the sensor to the leading edge of the fire
was then computed. Estimated total flame radiation and fraction of total heat release were
computed by integrating across the area above the fuel surface at radius D. An estimate of
the background radiation due to heating of the tunnel walls and surfaces was made by
rapidly extinguishing the fire while recording sensor output. This background normally
amounted to about 200 W m-2,
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Local gas concentrations:

Local gas samples were collected from the flame region using a 9.5 mm outside diameter,
L-shaped, stainless steel water-cooled probe. The probe was inserted through a slot to a
depth of 0.4 m from the tunnel side wall, 2 m downstream from the test section entrance
(Figure 5). The final 75 mm of the probe were bent 90° to the rest of the probe so that the
probe tip faced upstream during sampling. At the fuel surface, the probe tip was rotated
downwards to probe within the fuel bed. The height of the probe was adjusted manually
and fixed in position during sampling. The conveyor speed was adjusted as needed to keep
the fire in position during the sampling period.

The gas sample was drawn through a 1.5 mm diameter stainless steel tube running inside
the water-cooled probe. Initially, a static pressure tap located just inside the probe nozzle
was to be used to adjust the flow for isokinetic conditions. Plugging from tar condensing
at this tap when sampling near the fuel surface caused this method to be abandoned in favor
of a mass flow transducer at the outlet of the sample line. The mass flow sensor was used
to set sample flow rate from velocity measurements obtained with the anemometer near the
sampling location. When sampling within the fuel bed, plugging of the gas sample line
also occurred frequently.

The outlet of the gas sampling line was connected through a teflon line and glass fiber filter
to a teflon lined sample pump, impinger, and 2 mL glass sample collector. Actual sample
locations are shown in the results section. Background samples were collected upstream of
the fire. The sample line was purged for 3 minutes at each location before taking the
sample. Typical flow rates ranged from 0.1 to 0.25 L min-! depending on height.
Samples were analyzed within one day by gas chromatography for permanent gases and
light hydrocarbons. All gases were analyzed using a Hewlett-Packard 5730A gas
chromatograph. Oxygen, nitrogen, and carbon monoxide were analyzed using a thermal
conductivity detector (TCD) and separated ona 1.8 m x 3 mm molecular sieve SA column
with an injector temperature of 150°C, detector temperature of 200°C, and oven temperature
of 80°C. Helium was used as carrier gas. Carbon dioxide was analyzed on the TCD
following separation on a 1.8 m x 3 mm Porapak Q column at an oven temperature of 45°C
using helium carrier. Hydrogen was analyzed on the mol sieve column with nitrogen
carrier. Hydrocarbons including methane, ethane, ethylene, and acetylene were analyzed
by flame ionization detector (FID) following separation on a 1.8 m x 3 mm Porapak N
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column with nitrogen carrier and 50°C oven temperature. Calibration was performed after
every len sample injections.

Soot volume:

Line-of-sight average soot volume fractions were computed from measurements of laser
light extinction through the flame. An argon ion laser (488 nm wavelength, 50 mW
maximum output power CW, Omnichrome model 532, Chino, CA) was used in
conjunction with a photodiode (Silicon Detector Corp. model SD444-42-12-261,
Camarillo, CA) to monitor laser light intensity on the opposite side of the tunnel. An
interference filter (OFR model FL-488.0, Caldwell NJ) and neutral density filter (OFR
model FD-1.0) were placed ahead of the photodiode to restrict wavelength and attenuate
intensity. All optical elements were protected from ambient light. The laser and
photodiode were located on an external U-shaped mounting platform extending around the
walls and under the floor of the tunnel. The laser and photodiode were moved vertically
together by lifting the open end of the platform on a roller carriage. A low-pass filter was
used on the photodiode output to provide a longer time constant (on the order of 1 - 2 5) to
obtain better averages of light extinction. The output signal was acquired on the same data
acquisition system described above. Full details of this analysis are included in (18).

The light beam was passed through a vertical series of 16 mm diameter holes in the wind
tunnel wall. All holes not in use were kept covered. Sampling heights were 76, 127, 178,
229, 330, 432, 533, and 686 mm above the rod conveyor. Scans were conducted by
holding the conveyor stationary and allowing the fire to burn past the laser in the same
manner used for obtaining the time-temperature histories with the type-K thermocouple
array. This technique proved more consistent than attempting to hold the fire stationary at
each sampling location. Samples were acquired at 1 Hz, with a total scan duration of
approximately 240 seconds at each height. Ambient background radiation was removed by
referencing all intensities to the upstream intensity ahead of the flame. An estimate of the
error from flame (non-laser) radiation was made by allowing the fire to spread past the
photodiode without the laser operating. A maximum diode response of approximately 10
mV was observed, giving errors of 1 to 2% for typical voltage drops of 0.5 to 1 V due to
flame attentuation of laser light.

Average soot volume fraction across the tunnel width was computed using a Rayleigh
formulation,
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kext={ In (1) [12]

kem:l;-z-zm(g—g;—]zmﬁ (13]

o ="—;k'2 [14]
and,

¢=Nz D3 [15]
where kex = extinction coefficient,

L = path length (in this case, the width of the tunnel)
I = attenuated light intensity at photodiode

Ip = unattenuated light intensity at photodiode

Im = imaginary part

A = wavelength of incident light (m)

m = refractive index of particles = 1.57 - 0.56i
i=(1)172

N = particle concentration {m-3)

D = particle diameter, assumed uniform (m)

¢ = soot volume fraction (-)

The refractive index used was that of Dalzell and Sarofim (19). Under these assumptions,
the soot volume fraction was computed from the diode intensity as:

$=8.18x1081In (II—O) (15a]
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To examine the assumption that light attenuation was due principally to soot absorption, a
series of particulate samples was collected from the flame and post-flame regions using a
point-to-plane electrostatic precipitator. These samples were examined by transmission
electron microscopy (TEM). Large numbers of soot particles in the size range of 10 - 30
nm were found in the flame regions (Figure 6). Ash particles were present in the post-
flame region, but soot still appeared to be the predominant form. The soot volume is, at
any rate, relatively insensitive to the value of m for fairly large changes in its magnitude.
No calibrations were attempted, nor was multiple scattering considered to be significant in
comparison to the attenuation from soot absorption (0.5 < I/, < 0.8).

Operating conditions:

Inlet air temperature was monitored by a thermistor located between the flow straightening
screens in the inlet section, and later by a type T thermocouple placed near the inlet of the
combustion test section. Inlet relative humidity was monitored near the screens by a
polymeric humidity transducer (Phys-Chem Scientific model PCRC-11, New York, NY).
These sensors were connected to a separate electronic datalogger (Campbell Scientific
model CR21X, Logan Utah) with digital values stored on a microcomputer. Also
connected to the datalogger were the stack and impinger thermocouples, the stack
anemometer, and a sensor for measuring conveyor speed. The conveyor speed was
measured by counting switch closures on a switch operated by an eight lobe cam fixed on
the end of the drive motor gear head shaft. Conveyor travel (total displacement} was
obtained by integrating conveyor speed over time. Instantaneous fuel consumption rate
was obtained from the conveyor speed and the predetermined loading rate. Total fuel
consumption was determined directly from loaded fuel weight and from total conveyor
travel. All sensors were scanned at 1 minute intervals, with the exception of the stack
anemometer (scanned at 1 Hz and averaged over 1 minute), and the conveyor speed, which
was monitored continuously. Average stack gas velocity was computed across the twelve

traverse positions.

Fuel was manually loaded and spread at a constant 680 g m-2 wet basis. For these tests,
fuel moisture content was similar (overall range of 6.4 to 10.1% wet basis), and the dry
weight loading rate was therefore similar. Fuel samples were collected every two hours
and bagged in plastic. These samples were later tested for moisture by oven drying. A
single source of fuel was used for all tests, and was supplied in multiple bales weighing
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300 to 400 kg each. The fuel was rice straw, including both lower and upper plant parts
(stubble and straw), and was obtained by swathing (cutting close to ground level) and
baling a harvested field.

Figure 6. Transmission electron micrograph of soot particles collected from the flame
region, 63 mm above the fuel surface, on a point-to-plane electrostatic precipitator. The
length of the reference bar represents 250 nm.

Each test was started by loading the conveyor along its full length and about 3 m into the
combustion test section, igniting the fuel across the width of the tunnel with a hand-held
propane burner, and allowing the tunnel to stabilize over 10 to 15 minutes. A fine
stainless steel wire mesh was interwoven among the stainless steel rods, which, in the case
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of the configurations with no floor installed, prevented fines from falling through to the
refractory floor and causing ignition of the incoming fuel ahead of the fﬁe front. The
region between the rod conveyor and the refractory brick was baffled by placing transverse
steel sheets vertically up to the bottom of the rod conveyor along the tunnel floor at 1 m
intervals (Figure 2). The baffling was intended to be representative of the stubble layerina
field burn.

Ash was collected throughout each experiment and weighed. Fuel rate, stack gas velocity,
and ash rate were used to determine the inlet air mass flow rate and average velocity by
mass balance. The inlet velocities from the x-probe anemometer were qualitatively in good
agreement with those determined by mass balance, although total flow rates could not be
determined from the anemometer results.

Results

Average results for each of the eight cases (four configurations with two wind speeds) are
listed in Table 1. Results for individual experiments are included in the appendix. The low
wind speed setting was in the range of 2.1 - 2.2 m s-1. The high speed setting was 3.1 -
3.2 m s, Average fuel moisture varied between 7.8 and 9.3% wet basis. The residual
ash fraction was typically 20% of fuel dry weight, and overall air-fuel ratios ranged from
about 550 t0 900. The fire spreading velocities were 0.5 - 0.6 m min-! (8-10 mm s-1)
except for the CRNF high wind speed configuration for which the mean spreading velocity
was significantly different at about 0.7 m min-! (range of 0.58 to 0.82 m min-!). Faster
spreading rates were obtained during three consecutive experiments in the CRNF high
wind speed configuration. These all used fuel from a single bale of straw and were
conducted under higher ambient air temperatures than most other tests. Spreading rate was
not well correlated with air temperature, although a trend towards increased spreading rate
with increased temperature was observed. Spreading rates were also observed to change
occasionally as one bale was exhausted and a new bale started. These differences are
thought to be related to the bulk density of straw as loaded on the conveyor (with constant
loading rate), as well as to differences in properties of the straw. Further studies are
needed to investigate these influences.

Average emission factors for PM varied from 0.5 to 0.7% of fuel mass (global mean =
0.635%, standard deviation = 0.097%). There were significant differences in the emission
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factors among the various configurations, however. The incidence table for a three-way
analysis of variance (ANOVA) is given in Table 2.

The floor (probability p = 0.0003) and wind speed (p = 0.0005) had the largest effect on
PM emission factor, while the ceiling position had little effect by itself (p = 0.8015). The
extremes in the average PM emission factor were 0.505% for the CEWF high wind speed
configuration, and 0.727% for the CRNF low wind speed configuration. Most of the
following discussion is therefore focused on these two cases, the other cases being
intermediate in effect. Full results for all cases are included in the appendix.

Table 1. Means of operating results for four configurations and two wind speeds.

CRNF CRNF CENF CENF CEWF CEWF CRWF CRWF

Low  High Low High Low High Low High
Wind Wind Wind Wind Wind Wind Wind Wind
Speed  Speed Speed Speed Speed Speed Speed Speed

Mean Inlet Air Velocity (m/s) 2.2¢ 3.17 2.11 3.18 2.18 3.13 2.10 3.21
Fuel Moisture Content (% wel basis) 8.62 8.28 8.31 7.83 8.15 9.33 8.42 9.13
Fire spreading velocity (m/minute) 0.53 0.69 0.52 0.60 0.52 0.47 0.51 0.50

Ash Fraction (g/g) 0.19 0.19 0.21 0.21 0.19 0.20 0.19 0.18
Overall Air-Fuel Ratio (g/g) 565.68 636.36 541.98 718.02 559.21 917.73 560.15 907.51
PM Concentration (mg/m>) 15.84 10.57 15.12 10.88 1433 6.74 12.33 7.98

PM Emission Factor (%) 0.727 0.560 0.681 0.645 0.636 0.505 0.562 0.597

Table 2. Three-way incidence table on PM emission factor (%,
number of experiments shown in parentheses).

Floor Configuration No Floor With Floor
Totals
Wind Speed | <3m/s| >3mss| <3mss] >3mss
(13) ©) © C)] (32)
o | Remced 0727 | 0560 | 0562 | 0597 | 0633
%
o an | ©® (1 @ (32)
Exended | o1 | 0645 | 0636 | 0505 | 0637
Totals 24) (12) (20) ®) 64)

0.706 | 0.602 0.603 0.551 0.635
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Inlet Velocity Profiles and Turbulence Characteristics:

Inlet streamwise and vertical velocity profiles and turbulence intensities for both wind
speeds are shown in Figures 7a-p for the CEWF configuration, and Figures 8a-p for the
CRNF configuration. The floor had little effect on the velocity profiles, and results for
comparable wind speeds and ceiling positions in the other two configurations are similar.
For convenience, a test in which no fire was present in the tunnel is referred to as cold
flow, and for a fire present in the tunnel, hot flow (the terms are based on stack
conditions). Apparent in the profiles shown below is the limited traverse depth possible in
the hot flow conditions at the downstream position. Nor could the flow be probed close to
the fuel surface because of fuel elements which extended above the mean fuel surface.
Turbulence measurements with x-probe hot-film anemometers are well known to be
unreliable very near rough surfaces at any rate (20); turbulence characteristics reported at
lower heights are somewhat qualitative in nature.

Ceiling Extended Configuration

The high speed CEWF streamwise velocities for the upstream and downstream positions
are shown in Figures 7a and 7e, respectively. Maximum freestream velocities were 3.5 m
s-1 in cold flow and 3.9 m s-! in hot flow. The maximum velocities at the upstream and
downstream positions were essentially the same. Boundary layers over the fuel surface as
well as below the ceiling were evident. The traverse integrated velocities were higher in hot
flow than in cold flow (Table 3).

The respective vertical velocities appear in Figures 7b and 7f. The vertical velocity in the
upstream position started near zero just above the fuel surface and increased to about 0.09
m s~ at 110 cm above the rod conveyor and then jumped to about 0.2 m s-1 at the highest
sampling point due to leakage through the probe access hole in the ceiling. The
downstream vertical velocities also started near zero at the fuel surface but increased to
between 0.2 and 0.3 m s-1. Vertical velocities in hot flow were slower than in cold flow at
both positions, whereas the opposite was observed with the streamwise velocities.

Plots of local turbulence intensities for the high wind speed runs, including upstream
streamwise, upstream vertical, downstream streamwise, and downstream vertical
turbulence intensities are shown in Figures 7¢, 7d, 7g, and 7h respectively. Freestream
local turbulence intensities were 2% in the streamwise direction and 1% in the vertical
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direction. Within the lower boundary layer (which was approximately 60 cm thick) the
turbulence intensities increased to maximum values of 25% to 35% in the streamwise
direction and 10% to 12% in the vertical direction as the surface was approached. Hot flow
turbulence intensities in the boundary layer were slightly higher than those of cold flow.
The upstream and downstream comparisons were remarkably similar. They also compared
very well with the CENF configuration. Ratios of the vertical turbulence intensities to the
streamwise turbulence intensities are 0.35 t0 0.40. This is consistent with other wind
tunnel and atmospheric data (20 - 24).

Profiles of the streamwise velocities for the low wind speed are given in Figure 7i for the
upstream position and in Figure 7m for the downstream position. The maximum cold flow
velocities were between 1.9 and 2.1 m s~1. The hot flows reached about 2.2 m s-1. The
upstream and downstream vertical velocities are shown in Figures 7j and 7n, respectively.
The vertical velocity in the upstream position again started near zero at the fuel surface and
increased to about 0.07 m s-! at 110 cm and then increased to about 0.2 m s-! at the
highest sampling point near the probe access hole in the ceiling. In the downstream case,
the cold flow vertical velocity started at zero near the fuel surface and increased uniformly
with heightto 0.2 m s-1. These two profiles are very similar to the respective CEWF high
speed cases in Figures 7b and 71.

The streamwise and vertical turbulence intensities at the upstream position are shown in
Figures 7k and 71, respectively. The corresponding profiles for the downstream position
appear in Figures 70 and 7p. The hot and cold flow freestream turbulence intensities in the
streamwise direction were 3-4% for both the upstream and downstream positions. The
freestream vertical turbulence intensities were 1-2%. The intensities increased to values of
40-50% in the streamwise direction and 10-20% in the vertical direction as the fuel surface
was approached. In the upstream case, the hot flow turbulence intensities were higher in
the boundary layer. The traverse depth in the downstream position was not sufficient to
observe any differences between the hot and cold flow conditions.

Ceiling Retracted Configuration

The streamwise velocity profiles for the CRNF high wind speed, upstream and
downstream positions appear in Figures 8a and 8e, respectively. Maximum velocities were
3.2to 3.3 m s’ in cold flow and 3.5 to 3.6 m s-! in hot flow. The hot flow condition at
the upstream position exhibited a thicker boundary layer and a faster freestream velocity
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Figure 7a. Streamwise velocity, CEWF, high wind speed, upstream position.
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Figure 7b. Vertical velocity, CEWF, high wind speed, upstream position.
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Figure 7c. Streamwise turbulence intensity, CEWF, high wind speed, upstream position.
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Figure 7d. Vertical trbulence intensity, CEWF, high wind speed, upstream position.
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Figure 7e. Streamwise velocity, CEWF, high wind speed, downstream position.
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Figure 7g. Streamwise turbulence intensity, CEWF, high wind speed, downstream
position.

=—=O0—— With Fire =& Without Fire

—
Fs
<

—
[
<

g

Height (cm)
0
=)
F

& 8

/

0 10 20 30 40
Turbulence Intensity (%)

Figure 7h. Vertical turbulence intensity, CEWF, high wind speed, downstream position.
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Figure 7i. Streamwise velocity, CEWF, low wind speed, upstream position.
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Figure 7j. Vertical velocity, CEWF, low wind speed, upstream position.
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Figure 7k. Streamwise turbulence intensity, CEWF, low wind speed, upstream position.
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Figure 71. Vertical turbulence intensity, CEWF, low wind speed, upstream position.
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Figure 7m. Streamwise velocity, CEWF, low wind speed, downstream position.
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Figure 7n. Vertical velocity, CEWF, low wind speed, downstream position.
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Figure 7p. Vertical turbulence intensity, CEWF, low wind speed, downstream position.

44



than the cold flow. Both positions showed a relatively deep boundary layer over the fuel
surface. No ceiling boundary layer was apparent at the downstream location, but the
remnant of a ceiling boundary layer was suggested by the slower velocities at the top of the
traverse in the upstream cold flow case.

The vertical velocity profiles for the upstream and downstream positions are shown in
Figure 8b and Figure 8f, respectively. Although they are similar to each other, they are
quite different from the vertical velocity profiles in the ceiling extended configurations.
With the ceiling retracted, there was considerable upward velocity, increasing t0 0.7 - 0.9
m s-! at the top of the traverse.

The streamwise and vertical turbulence intensities for the high wind speed upstream
position are plotted in Figures 8c and 8d, respectively. The corresponding downstream
profiles can be seen in Figures 8g and 8h. Freestream intensities were 2-3% in the
streamwise direction and 1-2 % in the vertical direction. The intensities increased as the
fuel surface was approached to a maximum of about 40% in the streamwise direction and
about 15% in the vertical direction. Moving downwards from the top of the traverse, the
upstream hot flow turbulence intensities were greater than those in cold flow.

The low speed streamwise velocity profiles appear in Figure 8i for the upstream position
and in Figure 8m for the downstream position. These profiles are distincdy different from
any observed with the ceiling extended or at the higher wind speed. At the upstream
position, the flow was more or less constant at 0.25 m s-1 between 10 and 30 cm above
which it increased with height to a maximum of 1.5 m s-! cold flow and 1.9 m 51 hot
flow. The downstream cold flow condition exhibited this constant velocity region between
10 an 40 cm. Above, the velocity increased to about 1.6 m s

The corresponding vertical velocities are plotted in Figures 8j and 8n. Unlike the high
wind speed vertical velocities with the ceiling retracted (which started at zero and increased
approximately linearly with height), the low wind speed vertical velocities remained
essentially zero until a height of 45 cm at the upstream location, and approximately 60 cm at
the downstream location. At both the upstream and downstream locations, the hot flow
reached a maximum vertical velocity of about 0.4 m s'! and the cold flow reached a
maximum of 0.5 m s°1.
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Figure 8b. Vertical velocity, CRNF, high wind speed, upstream position.
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Figure 8c. Streamwise turbulence intensity, CRNF, high wind speed, upstream position.
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Figure 8d. Vertical turbulence intensity, CRNF, high wind speed, upstream position.
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Figure 8e. Streamwise velocity, CRNF, high wind speed, downstream position.
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Figure 8f. Vertical velocity, CRNF, high wind speed, downstream position.
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Figure 8i. Streamwise velocity, CRNF, low wind speed, upstream position.
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Figure 8k. Streamwise turbulence intensity, CRNF, low wind speed, upstream position.
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Figure 81. Vertical turbulence intensity, CRNF, low wind speed, upstream position.
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Figure 8p. Vertical turbulence intensity, CRNF, low wind speed, downstream position.
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The upstream streamwise and vertical turbulence intensities for the low wind speed are
shown in Figures 8k and 81, respectively. The downstream turbulence intensities are
shown in Figures 80 and 8p. The magnitudes in the freestream were 5-8% for the
streamwise direction and 2-4% in the vertical direction. The streamwise turbulence
intensities reached maximum values of 50 to 60% just above the region of constant velocity
below 40 cm. The upstream vertical turbulence intensities decreased with increasing height
from a maximum of 23%. The cold flow downstream turbulence intensities both showed
an increase with a decrease in height downwards to the top of the constant velocity region.
Below that level the streamwise intensities declined.

Streamwise velocity profiles were integrated over height to obtain average wind speed in
the profile. The results are shown in Table 3. The average velocity was higher in hot flow
than in cold flow due to the buoyancy introduced by the fire. The relative increase was
greater at low speed than at high speed, which is consistent with the greater relative
buoyancy strength at lower velocity (13). Taking representative conditions for both
configurations, the relative buoyancy strength, (Tg - To)To, where Ty is the stack gas
temperature and T, is the reference inlet temperature, is 20% greater at the low wind speed
than at the high wind speed.

The thickness of the boundary layer, 8, above the fuel surface was also determined when a
boundary layer was observed to be reasonably well developed. Intermittency was not
considered for this analysis. The top of the boundary layer is generally evident where
turbulence intensity begins to increase from its low, nearly constant value in the freestream.
The Reynolds stress was also used in estimating the boundary layer thickness. In the
boundary layer, the Reynolds stress is non-zero, but in the freestream, with constant
streamwise velocity, the Reynolds stress vanishes. Intermittent turbulence at the edge of
the boundary layer makes the boundary layer thickness more difficult to define, Both
methods for determining & were in fairly good agreement, and averages are given in Table
3. The traverse depth was insufficient to determine & for all of the downstream hot flow
tests. Developed boundary layers were not observed in the CRNF low wind speed
configurations, although in one case (upstream, hot, see Figure 81), an apparent depth was
determined. With the higher wind speed, the hot flow boundary layers tend to be thicker
than the cold flow, which would be expected from the higher velocities in hot flow.
Boundary layers are turbulent for Reynolds numbers based on momentum thickness of
5000 and possibly lower (25). For the configurations tested here, the momentum

54



thickness Reynolds numbers range from 9,000 at the lower wind speeds to 19,000 at the
higher wind speeds.

Table 3. Computed wind speed, boundary layer thickness, roughness height, and friction
velocity.

Integrated

Wind Speed Flow u*
Configuration ms) Position  Condition (M)  z5(m) (ms!)
CEWF 2.98 upstream cold 0.45 0.023 0.42
CEWF 3.19 upstream hot 0.65 0.050 0.61
CEWF 2.93 downstream cold 0.60 0.055 1.26
CEWF 3.16 downstream hot 0.65* * *
CEWF 1.53 upstream cold 0.70 0.096 0.44
CEWF 1.71 upstream hot  0.55 0.131 0.60
CEWF 1.53 downstream cold 0.60 0.119 0.45
CEWF *  downstream hot * * *
CRNF 2.75 upstream cold 0.60 0.047 0.49
CRNF 2.77 upstream hot  0.80 0.090 0.63
CRNF 2.52 downstream cold 0.70 0.069 0.51
CRNF *  downstream hot * * *
CRNF 0.96 upstream cold + 0.352+ 0.69%
CRNF 1.29 upstream hot Q.60+ 0.298+ 0.94+
CRNF 0.65 downstrcam cold + 0.540+ 0.81+
CRNF *  downstream hot * * *

* partial traverse.
+ fully developed boundary layer not observed.

Estimates of roughness heights and friction velocities are also listed in Table 3. Roughness
heights varied from about 0.02 to 0.13 m, except in the case of the CRNF low wind speed
tests. The roughness heights estimated for these tests were much higher as a result of the
low velocity regions extending upwards from the fuel surface. Friction velocities were 0.4
to 0.6 m s-1, with the exception of one CEWF high wind speed configuration and the
CRNF low wind speed configurations. The model fit of equation [9] (page 20) is good for
the CEWF configurations, and for the higher speed CRNF configurations. An example is
given in Figure 9.

The velocity profiles for the CEWF high wind speed and CRNF low wind speed
configurations are distinctly different. The difference is more readily seen by the similarity
analysis of Figure 10. The average velocity has been divided by the velocity at the "edge”
of the boundary layer, Ue, taken at a height 8. The height, z, has been divided by the
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boundary layer height, 8. Three profiles are shown. Upstream positions are used because
full traverses are available in all three cases. The CEWF high wind speed configuration in
both cold and hot flow displays characteristics of an adverse pressure gradient (26) which
is not unexpected in this tunnel. The CRNF low wind speed configuration exhibits the
characteristics of a flow in an extremely adverse pressure gradient, with a separated flow.
Thus it makes litte sense to attempt to model the CRNF low wind speed profiles using the
logarithmic law-of-the-wall, as this model is not valid under these conditions. The values
given for z, and u* therefore should not be construed as meaningful in these cases.
Potential complications arise in this interpretation because of the possibility for secondary
flows originating at the junction between the flexible conveyor and the rod conveyor,
particularly from buoyancy induced entrainment at the lower wind speeds. The potential
for such flows was subsequently removed by sealing this area.
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Figure 9. Velocity profile, CEWF, with fire, high wind speed, upstream position, with
logarithmic law-of-the-wall model shown for comparison (u* = 0.61 m 51, 25 = 0.05 m).
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Energy spectra for the CEWF high wind speed, hot flow condition, at the upstream
position are shown in Figure 11. Those for the CRNF low wind speed, hot flow
condition, upstream position are shown in Figure 12. The spectrum for each of four
different heights above the rod conveyor is given in each graph. The abscissa in each case
has been stretched for clarity. The highest wavenumber in each spectrum is always
between 103 and 104 for the high wind speed configuration in Figure 11. This is also true
for the spectra in Figure 12 with the exception of that at 180 mm height, for which the
range extends to 105 because of the low velocity at this height in this configuration.
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Figure 10. Non-dimensional velocity profiles for CEWF high wind speed and CRNF low
wind speed configurations (data for zero pressure gradient and separating flows from
reference 26, p 470).
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The spectra for the three lowest positions in Figure 11 all exhibit a region of wavenumbers
extending from about 10 to 700 where E varies as k33, Maximum energy at ) near 5 -
10 m-! for the 180 mm height suggests an integral length scale on the order of 0.1 - 0.2 m,
although the data are sparse in this region. A maximum is not clearly seen for the other two
locations in the boundary layer. Results from autocorrelations at all three locations give
integral length scales of 0.16 - 0.19 m. The spectrum for the 800 mm height does not give
a -5/3 slope as it is outside the boundary layer. The autocorrelation at this height gives an
integral length scale of 0.65 m, which is within the physical limit imposed by the width and
height of the tunnel. The dissipation range starts at wavenumbers around 700 for the lower
positions. Visually, the spectra suggest the Kolmogorov scale, 1, may be on the order of
0.3 - 0.5 mm at wavenumbers of 2000 - 3000 m-!. The Kolmogorov scale and the integral
length scale are related by (14),

3

n. (.‘.{‘i) 4 _Re, Y4 [16]
¢ 1

where £ is the integral length scale (m), v is the kinematic viscosity (m2s-1), and Re, is
the Reynolds number. For £ = 0.16 m and U = 2 m s°1, 1 = 0.1 mm, which suggests a
Kolmogorov scale at wavenumbers of 104, which is beyond the range observed for a 2.2
kHz sampling frequency. Equation [16] applied in the freestream also gives 1 on the order
of 0.1 mm.

Because of the dependence of x; on U, the low velocities in the CRNF low wind speed
configuration extend the spectra of Figure 12 over an additional decade at the lower
positions. The poor boundary layer development in this configuration shifts the spectrum
at 180 mm relative to the other heights. Although there is still a region of -5/3 slope in each
of the three lowest spectra, there is no clear point of maximum energy. Nor is the
dissipation range well defined. Autocorrelations yield 0.12 < £ <0.15 m between 180 and
510 mm height, and ¢ = 0.77 m at 800 mm height. For U = (.25 m s-1, equation [16]
suggests 1 = 3 mm, which corresponds to wavenumbers of 300. At 500 mm, equation
[16] suggests | = 1 mm, and in the freestream at 800 mm, i = 0.2 mm. The peculiar
nature of the flow in the CRNF low wind speed configuration causes the characteristic
small scales to vary over the profile. The application of Taylor's hypothesis is at any rate
questionable for this flow.
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Particle Size Distributions:

Particle size distributions for replicated experiments of the CEWF high wind speed
configuration are shown in Table 4a, while those for the CRNF low wind speed
configuration are shown in Table 4b. Computed mass median aerodynamic diameters
(MMAD) and geometric standard deviations (cg) are also shown. All distributions showed
a large fraction of fine particulate matter, with 70% or more collected on the final filter stage
of the cascade impactor. The distributions generally reached a minimum at around 2 to 5
pm, with increasing mass collected on the larger stages. No substantial differences were
seen between the CEWF high speed and CRNF low speed configurations. The CEWF
experiments bracket the CRNF experiments in MMAD.

Table 4a. Particle size distributions for replicates of CEWF high wind speed configuration.

1. 2.
MMAD = 0.101 um MMAD=  0.062 um
g, = 392 og = 3.38
Effective Mass Mass  Cumulative Effective Mass Mass Cumulative
Diameter Fraction Mass Diameter Fraction Mass
Fraction Fraction
Stage (um) (mg) % % Stage (Hm) (mg) % %
1 13.69 03 42 100.0 1 13.57 0.5 7.4 100.0
2 7.67 0.1 14 95.8 2 7.60 0.1 1.5 92.6
3 4.09 0.1 1.4 944 3 405 0.0 0.0 9]1.2
4 2.16 0.1 14 93.0 4 2.14 0.0 0.0 91.2
5 1.24 0.2 28 91.5 5 1.23 0.2 29 91.2
6 0.73 04 5.6 88.7 6 0.73 0.3 44 88.2
7 0.38 0.5 7.0 83.1 7 0.38 0.5 7.4 838
filter 54 76.1 76.1 filter 5.2 76.5 76.5

Table 4b. Particle size distributions for replicates of CRNF low wind speed configuration.

1 2.
MMAD= 0.087 um MMAD=  0.091 um
Oy = 357 og= 432
Effective Mass Mass  Cumulative Effective  Mass Mass Cumulative
Diameter Fraction Mass Diameler Fraction Mass
Fraction Fraction
Stage {jtm) (mg) % % Stage {um) (mg) % %
1 15.61 0.5 49 100.0 1 15.56 0.7 56 100.0
2 8.74 0.2 1.9 95.1 2 872 0.4 32 944
3 4.66 0.3 2.9 932 3 4.65 04 32 91.1
4 247 0.2 1.9 90.3 4 246 0.3 24 87.9
5 1.42 0.1 1.0 883 5 141 0.3 24 855
6 0.83 04 39 874 6 0.83 0.5 40 83.1
7 0.44 0.5 4.9 83.5 7 0.43 0.7 56 79.0
filter 8.1 78.6 78.6 filter 9.1 734 734
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Temperature profiles:

Isotherms from the thermocouple array are plotted in Figures 13 and 14 for the CEWF high
wind speed and CRNF low wind speed configurations, respectively. Also shown are
representative relative frequency densities for the flame tip, flame center, and fuel surface
derived from measurements with the fast response type-R thermocouple. Sampling
locations are indicated on the graphs. The time scale of the original measurements was
converted to distance (travel) by the measured spreading rate for each experiment. Profiles
showing means and standard deviations of temperature from measurements with the fast
response thermocouple are shown in Figures 15 and 16 for two traverses in each
configuration--upwards through the flame center, and upwards over a region of glowing
combustion 150-200 mm behind the flame.

Distinct differences existed in the flame shape for the two configurations. The CEWF high
wind speed configuration exhibited high flame tilt and short flame length. The burning
zone length in the bed was 550 to 600 mm, with a duration of approximately 60 s. The
flame angle was about 30° from the horizontal, and was substantially shallower than the
flame angle in the CRNF configuration. The flaming zone in the bed was approximately
300 mm long, with a region of glowing combustion extending behind for another 200 -
300 mm. The flame length was approximately 400 mm.

The CRNF low speed configuration gave tall, erect flames with flame angles in excess of
60° from the horizontal. The burning zone in the fuel bed was 600 to 650 mm in length,
corresponding to a duration of about 50 s. The flaming zone extended about 200 mm
behind the front, with a region of glowing combustion extending beyond. Cooling was
quite rapid behind the flame (Figure 14), apparently due to entrainment of air from below
the fuel bed. Increasing the wind speed for this configuration caused the flame to become
noticeably tilted, with an angle of 40 to 50°, and a burning length varying between 500 and
1,000 mm. Flame length was about 600 mm.

The relative frequency densities of temperature are similar in many respects, differences
being due principally to the greater unsteadiness of the flame with the higher wind speed in
the CEWF configuration. Peak temperatures measured at the fuel surface were somewhat
lower in the CEWF configuration, 1200 vs. 1350°C for the CRNF configuration, but this
is likely due to the relatively poor frequency response of the thermocouple (about 200 Hz).
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Some averaging would therefore have occurred as the thermocouple was exposed to higher
frequency turbulent fluctuations of the flow between ambient and flame temperature.  As
indicated earlier, true peak temperatures were no doubt higher than measured. Heat loss
from the thermocouple along with averaging in the turbulent flame would reduce the
measured temperature below the actual flame temperature. True flame temperatures are
probably below 1700°C due to heat loss from soot radiation. Soot particle temperatures of
1480°C have been measured by emission and absorption of near-infrared radiation in an
atmospheric pressure, laminar ethylene-air diffusion flame (27).

Shown in Figure 17 are the temperature contours and relative frequency densities for the
CENF high wind speed configuration. This configuration differs markedly from the
CEWF case at the same speed. The flame angle is also about 30°, but the flame is
comparable in length to the CRNF configuration (about 600 mm). The flame shape
appeared to be sensitive to both the ceiling and floor configurations. Flame length was
increased by removing the floor or retracting the ceiling. The CENF configuration
resembles temperature profiles collected during an actual field burn in rice straw. An
example is shown in Figure 18.

Flame Radiation:

Flame radiation results for all configurations are shown in Figures 19a and b. The results
are plotted against the distance D between the leading edge of the fire at the fuel surface and
the heat flux sensor, as in Figure 5. All values have been corrected for background.

Total emitted power averaged over all samples in each configuration is given in Table 5.
Total flame radiation ranged from 8 to 20 kW, with a mean of 13 kW. Total heat release by
the fire was computed from the loading rate, spreading velocity, residual ash fraction, and
the heating values of the fuel (16 MJ/kg) and ash (5 MJ/kg). The total heat release averages
about 107 kW. Of this, flame radiation accounts for 8 to 20%, with an average of 12%.
The emitted fraction is also shown graphically for all configurations in Figure 20. The
emitted fraction tends to be higher with the ceiling extended. Both low wind speed
configurations with the floor installed (CEWF low and CRWF low) have higher emitted
fractions than the other configurations with the same ceiling position. Average spreading
rate was not clearly correlated with average emitied fraction.
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Figure 13. Temperature contours and relative frequency densities of temperature from fast
response thermocouple at indicated positions in flame, CEWF high wind speed
configuration. Contour interval = 100°C, height given above fuel surface.
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Figure 14. Temperature contours and relative frequency densities of temperature from fast
response thermocouple at indicated positions in flame, CRNF low wind speed
configuration. Contour interval = 100°C, height given above fuel surface.
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Figure 15. Temperature profiles showing mean and standard deviation for the CEWF high
wind speed configuration. (a) upwards through flame center, (b} upwards over glowing
combustion zone.
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Figure 16. Temperature profiles showing mean and standard deviation for the CRNF low
wind speed configuration. (a) upwards through flame center, (b) upwards over glowing
combustion zone.
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configuration. Contour interval = 100°C, height given above fuel surface.
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Figure 19. Flame radiation for four configurations. (a) low wind speed, (b) high wind
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Figure 20. Radiation emitted as a fraction of total fire heat release.

Table 5. Total emitted power, heat release, and fraction emitted as flame radiation.
Fire Total Heat

Wind Total Emitted Spreading Release Rate Emitted
Configuration Speed Power (W) Rate (m/min) (W) Fraction
CEWF low 20,161 0.52 103,017 0.20
CEWF high 8,991 0.47 93,112 0.10
CENF low 12,179 0.52 103,017 0.12
CENF high 16,915 0.60 118,866 0.14
CRWF low 15,711 0.51 101,036 0.16
CRWF high 8,335 0.50 99,055 0.08
CRNF low 8,456 0.53 104,998 0.08
CRNF high 13,332 0.69 136,696 0.10

Average 13,010 0.54 107,475 0.12
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Local Gas Concentrations:

Gas concentrations measured in the flame region are listed in Table 6 for the CEWF high
wind speed configuration, and in Table 7 for the CRNF low wind speed configuration.
Concentration profiles for oxygen, carbon monoxide, and carbon dioxide through the flame
center and over the glowing combustion zone behind the flame are plotted in Figure 21 for
the CEWF high wind speed and in Figure 22 for the CRNF low wind speed configuration.
The height is measured from the upper surface of the conveyor. The fuel depth is
approximately 60 mm for these tests.

The lowest oxygen concentrations detected were about 5% in the flame near the fuel surface
in both configurations. CO concentrations in the flame at the fue! surface were 7% in the
CEWEF configuration, and 9% in the CRNF configuration. CO2 concentrations reached
13% and 14% for the CEWF and CRNF configurations, respectively. Approximately 250
mm behind the flame, the oxygen concentration decreased to 16% at the fuel surface in the
CEWEF configuration, but remained near ambient in the CRNF configuration.

Table 6. Local gas concentrations, CEWF, high wind speed.

Height above conveyor {mm) 254 152 76 76 152 76
Height above fuel surface (mm) 190 88 12 12 88 12
Distance behind flame front (mm) 483 229 64 64 330 254
flame behind behind
Approximate location tip flame flame flame flame flame
Species
H3 (% viv) 0.027 0.091 0484 1.026 0.048 0.103
02 (% viv) 20.739 17.259 11.613 5207 19.575 15.687
N2 (% viv) 77.860 75.221 73.089 67.452 75.790 74.447
CO (% viv) ND 0.347 3.131 7.200 T 0.732
COr (% vIv) 0.655 3.099 7.627 12951 1.177 3.971
CH4 (ppm) 170 372 3,363 7,687 70 280
CoHy4 (ppm) 10 169 1,553 3,609 26 120
CoHg (ppm) 50 16 251 651 5 T
C2H> (ppm) 1 86 525 1,164 7 20
Total 99.304 96.081 96.513 95.147 96.401 94,982

ND = not detected. T = trace.
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Table 7. Local gas concentrations, CRNF, low wind speed.

Height above conveyor (mm}) 406 254 152 102 64
Height above fuel surface (mm) 342 190 88 38 0
Distance behind flame front (mm}) 229 190 127 102 64
Approximate location flame flame flame flame flame
Species
Hjz (% v/v) 0.036 0.072 0250 2394 2.590
Oz (% viv) 19.331 16.665 13.968 5485  7.705
N2 (% v/v) 77.584 78.004 76.491 66.526 66.774
CO (% viv) T 0606 1231 9.219 B8.758
COr (% viv) 1732 3.581 6776 13.947 11.480
CH4 (ppm) 140 620 940 15,670 15,350
CaHy (ppm) 30 200 710 8,200 10,170
CyHg (ppm) <10 10 30 1,060 860
C;H2 (ppm) 40 140 630 2,820 5,660
Total 98,704 99.025 98.947 100.346 100.511
Height above conveyor (mm) 610 152 102 64
Height above fuel surface (mm) 546 88 38 0
Distance behind flame front (mm) 330 280 178 254

flame behind behind  behind
Approximate location tup flame  flame flame
Species
H2 (% viv) ND 0.027 0.043 0.019
Oz (% viv) 20.578 19.748 20.318 20.437
N2 (% viv) 78.503 77.097 76.971 77.270
CO (% v/v) ND 0.258 0.134 0.125
COr (% viIV) 0.941 1.240  0.758  0.749
CH4 (ppm) 20 160 110 40
C2H4 (ppm) <10 <10 40 20
CyHg (ppm) <10 10 60 <10
CyHz (ppm) 10 <10 ND <10
Total 100.025 98.387 98.245 98.606

ND = not detected. T = trace.
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Figure 21. Gas concentration profiles for the CEWF high wind speed configuration. (&)
upwards through the flame center, (b) upwards over the glowing combustion zone.
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Maximum total hydrocarbon concentrations were 2.5 to 3% in the flame near the fuel
surface in the CRNF configuration. The maximum concentration observed in the CEWF
configuration was about 1%, also in the flame near the fuel surface. The concentrations
drop off rapidly upwards. The pyrolysis products hydrogen, methane, ethylene, acetylene,
and ethane were observed in quantity as expected for fuels of this type. The gas
composition was, however, dominated by Oz and N2 until near the fuel surface where
dilution was not so large or the products had not yet burned.

Soot Volume Fractions:

Vertical profiles of soot volume fraction are plotted against height above the conveyor in
Figure 23a for the CEWF high wind speed configuration and in Figure 23b for the CRNF
low wind speed configuration. Shown on each graph are five profiles at positions along
the surface extending from the point at which the fire first begins to pass the location of the
beam (0 mm), in the flame (67 - 220 mm), over the glowing combustion zone (520 - 630
mm), and well behind the flame over the char smoldering zone (1200 - 1330 mm). The
peak volume fractions were higher for the CRNF low speed configuration, and there was a
higher concentration in the plume behind the fire as well, which is consistent with the
higher PM emission for this configuration.

Under both conditions of wind speed the maximum soot loading was obtained at about 200
mm behind the front edge of the fire. Peak soot volume was found about 100 mm above
the fuel surface in the low speed case and about 50 mm above the fuel in the high speed
case. The soot peaks are located near the center of the flame in each case. Profiles taken
behind the flames show that the soot loading increases at large heights above the fuel bed,
suggesting a plume of smoke that is evolved from the fire. The relatively small values of
extinction that were obtained at the far downstream locations near the fuel bed may be due
to smoldering combustion in the bed which continues to yield some particles.

Discussion
Turbulent flows are characterized by a range of length scales from the largest energy-
containing eddies that are described by the integral length scale down to the smallest scales

of the flow, the Kolmogorov scales, in which viscous dissipation terminates the cascade of
energy through the spectrum. When a flow contains chemically reacting zones within it,
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Figure 23. Profiles of soot volume fraction for five streamwise positions. (a) CEWF high
wind speed, (b) CRNF low wind speed. Positions shown are distances downstream from
the leading edge of the fire.
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such as a flame, it is useful to compare the length or time scales of the turbulence with
characteristic length or time scales of the reaction zone. A comparison of these scales
serves to identify regimes of combustion (28) which may extend from a distributed reaction
zone regime that resembles a chemical reactor to a system that resembles laminar flamelets
that are strained and contorted by the turbulent flow field. An analysis of these time or
length scale ratios is instructive in terms of determining if model experiments behave ina
similar manner to full-scale systems. Variations in these ratios may affect the structure of
the flame and the emission of pollutants. A fundamental comparison of time scales in

combustion is the Damkohler number, Da, which relates a characteristic fluid mechanical

time scale, 7. to a time scale for chemical reaction, T, i.e.,

Da=ZE [17]
c

As L 0 the reactions tend towards equilibrium. As 1. — 0 and Da approaches zero the

reactions are far from equilibrium as the chemistry cannot keep up with the supply of
reactants that is imposed by the flow field. In a turbulent flow it is possible to associate the
fluid time scale with the turbulence characteristics, in particular, the turbulence intensity and
a length scale. Most mixing in turbulent flows is due to the large eddies so that an
appropriate fluid time scale would be the large eddy life time, found in terms of the integral
length scale, ¢, and the trbulence kinetic energy, Ex, as

4

FTRE,

(18]

The integral length scale was found by examination of the velocity spectra and velocity
autocorrelations as described earlier. Results of spectral analyses on both the CEWF high
speed and CRNF low speed configurations were given in Figure 11 and 12, respectively.
The spectra cover approximately 2.5 decades up to the maximum frequency allowed by the
sampling (1100 Hz or half the sampling frequency).

Approximate turbulent kinetic energies were estimated from the anemometer data by
assuming the intensities of the vertical and transverse fluctuations were half that of the
streamwise, whence
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3 -
E =Zu” [19]

where u’? is the variance of the velocity fluctuations in the streamwise direction, as before.
The time scale for chemical reaction will be approximately the same for rice straw
combustion in both the wind tunnel and in the field burn. Therefore, the question of
comparative Damkohler numbers becomes one of relative turbulence kinetic energies and
length scales.

For the CEWF high wind speed configuration, at a typical height of 200 mm (approximate
height of the flame tip), the rms velocity fluctuation is about 0.5 m s~1. The value of Ey is
then about 0.19 m2 s-2. The integral length scale at this height is 0.16 m; this yields an
approximate fluid time scale of 260 ms. In the CRNF low speed configuration at 200 mm
height, the rms velocity fluctuation is about 0.06 m s-1, the integral length scale is 0.12 m,
and the corresponding fluid time scale is about 1700 ms. The time scales converge for the

two configurations above 300 mm (Figure 24). Both are approximately 500 ms at 350 mm

height. The low intensity of turbulence gives very large values for T outside the

boundary layer {e.g., 800 mm height). The trend towards increasing time scale for the
CRNF configuration as the fuel surface is approached is opposite that of the CEWF
configuration.

Above the canopy of a field in an atmospheric boundary layer, the integral length scale is
much greater than in the tunnel, of the order of 100 m (29). However, this length scale is
clearly inappropriate in terms of mixing within a flame burning within the first 200 to 300
mm above the surface. In this case, a more appropriate measure of large scale turbulence
would be of the order of the flame height; larger eddies would appear simply as an
unsteadiness of the flow on the scale of the fire. Consequently, the relevant large length
scales would be of the same order in both field and tunnel flows, i.e. a flame height of
several hundred mm for the opposed flow condition over a straw layer. The estimated
turbulence intensity in the atmospheric boundary layer is approximately 15% of the mean
velocity at heights from 2 m to 30 m above the ground (30), and just above plant canopies
measurements range from approximately 30% to 120% (22 - 24, 31). The lower values are
typical of the turbulence intensities in the tunnel at the height of the fire. Consequently, the
relevant large eddy time scale in the field will be of the order of 100 to 500 ms at similar

wind speeds.
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Figure 24. Estimated fluid time scales based on integral length scales and velocity
fluctuations for the CEWF high wind speed and CRNF low wind speed configurations.

Another important comparison of scales relates to the local structure of the flame itself.
This comparison necessitates an examination of the small length scales, the Kolmogorov
scales, in relation to a characteristic flame thickness. The characteristic flame thickness
depends on the local flow field which may be described in terms of the strain rate or,
alternatively, the scalar dissipation rate. Following Peters (32), the typical thickness, Ay,

of a laminar diffusion flame may be written as

4y = o.qF?_ {20]
Xa

in which o, is a non-dimensional heat release rate, Dis a typical diffusivity and 2, is the

scalar dissipation rate at the stoichiometric location. The latter quantity fluctuates in a
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turbulent flame. It is very difficult to measure the mean scalar dissipation rate although
estimates can be obtained from measurements of the turbulent kinetic energy and viscous
dissipation rate. For the present purposes, it is necessary to estimate y,, from data for the
extinction of laminar diffusion flames. Methane is an appropriate choice to approximate the

fuel in the flames although the fuel actually consists of dilute hydrogen and methane with
CO. The value of y,, for methane-air flames is about 8 s-1. The flames in this study are

far from extinction. The upper limit of g, is taken as 1 s-1. At 1500 K, the diffusivity of
nitrogen in air is about 104 m2 s-1. From Peters (32), the value of &, for methane at a low
strain rate is around 0.01. These values lead to a lower estimate of the characteristic flame

thickness of 0.14 mm. Actual strain rates may be lower and would lead to higher values of
o, and smaller values of y,. Typical flame thicknesses may then be somewhat greater.

The Kolmogorov scale in the atmosphere is about I mm (29). In the CEWF high wind
speed configuration, the Kolmogorov scale was estimated to lie in the range of 0.1 to 0.5
mm. The uncertainty was greater in the case of the CRNF low wind speed configuration,
where the Kolmogorov scale was estimated to lie in the range of 0.2 to 3 mm. The flame
thickness is of the same order or slightly larger than the estimated Kolmogorov scales, at
least where a reasonably well developed boundary layer can be observed. Although the
conditions for a flamelet description of the flame structure may not be rigorously satisfied,
we may expect nevertheless that the structure of the flames will be similar in the field and in
the wind tunnel, given the similarity of the flame kinetics and the Kolmogorov scales. A
similar conclusion applies with regard to the large scale structures of the flames in the field

and tunnel.

In the case of the CEWF configuration, it has been possible to estimate surface roughness
heights and friction velocities from models of the flow based on the logarithmic law-of-the-
wall. With the higher wind speed, 20 < 7, < 50 mm, and 0.4 <u* < 1.2 m s-!. At lower
wind speeds, Zo = 100 mm, and 0.4 S u* < 0.6 m s-!. Similar conditions apply to the
CRNF high wind speed configuration, in which 40 €z, £ 90 mm, and 0.5 <u*< 0.6 m
s"1. However, for the CRNF low wind speed configuration, the logarithmic law-of-the-
wall model is not appropriate to determine z, and u*. Roughness heights for the
atmosphere were reported by Counihan (30) to range from 1.4 mm over open ground to
150 mm over rural terrain. A grassy surface with height 150 mm was reported to have a
roughness height of 6.6 mm. Raupach (20) gave z, from 15 to 50 mm for wheat fields
depending on canopy height, and 4 to 10 mm for model crops and regularly arrayed
elements in wind tunnels. Sutton (33) estimated 75 to be 20 mm over a 50 mm tall grass.
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Estimates from Counihan show the friction velocity for the lower atmosphere to be of the
order of 0.2 to 0.4 m s*! (30). For the experiments described here, the higher wind
speeds and the configurations with the ceiling extended give values of Zo and u* which are
at least comparable with atmospheric values. The values of zo computed from the CRNF
low wind speed velocity profiles are not.

That the flame temperature profiles are affected strongly by the change in wind tunnel
conditions is immediately apparent from Figures 13 and 14. As one would expect, the
flame bumning under the high velocity conditions is bent over by the approaching flow and
appears to be considerably shorter than the low speed flame. The peak temperatures that
were measured under both conditions were similar, about 1200 to 1300°C although it must
be born in mind that these temperatures represent lower bounds due to the averaging effect
of the thermocouple which had a finite response time to flame fluctuations. The
accompanying frequency distributions of temperature at similar positions in both flames are
quite similar in both cases. The most interesting distributions are at the foot of the flames.
The distributions appear to be bi-modal, with the lower mode indicating free stream cold air
at these locations. The form of the distributions may be important eventually in
understanding the sources of NO in these flames; measurements of NO were not obtained
however in these tests,

The reduction in the flame height with the increase in wind speed suggests that mixing may
be enhanced. The estimates of the time scale for large eddy mixing showed that in the high
speed condition this time scale was about 300 ms near the surface, and about 6 times this
value in the low speed case. Therefore, it is plausible, and not unexpected, that increased
wind speed would improve the mixing rates of fuel and air in these diffusion flames. This
is supported by an examination of the probe sampling results through the flame that were
presented in Figures 21 and 22. In particular, the O3 concentration profiles are of interest.
At low speeds, the O2 mole fraction reaches the free stream value at about 400 to 500 mm
above the fuel bed. On the other hand, at high speeds the free stream 02 mole fraction is
attained at a height of 200 mm above the fuel bed. CO and CO3 concentrations confirm the
trend. It is worth noting that there are no significant differences (within the experimental
uncertainty) in the 02, CO2 and CO concentrations near the fuel bed at the flame location
with and without the floor. However, the O2 concentration is lower and the product
concentrations are higher downstream of the flame front when the floor is present. This
observation suggests that transport of air through the floor may be important in the
downstream smoldering zone.
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Laser extinction was used to measure line-of-sight soot volume fractions. Typical peak
values measured in the flames were of the order of 10-8. Much higher values have been
obtained in measurements of the local soot volume fractions in hydrocarbon flames. For
example, Santoro, et al. (16) reported peak values of about 10-3 in a laminar ethylene air
diffusion flame. Neill and Kennedy (34) measured values of about 6x10-7 in a turbulent
ethylene air flame and about 2x10-7 in a turbulent propane air flame. Portions of the laser
path were outside the flame region because it was necessary to define the path length in
terms of the tunnel width due to the unsteadiness of the flame. No other satisfactory
measure of the path length was possible. For this reason, the reported soot volume
fractions are much lower than one would obtain by measuring over a much shorter distance
through a laminar or confined turbulent diffusion flame.

It is apparent from comparing the two sets of profiles that the wind speed has an important
impact on the soot formation within the fire itself. The soot loading under the low speed
conditions is about a factor of three higher than for the high speed flame. The trend is
consistent with the results on particulates that were obtained from particulate sampling in
the stack of the wind tunnel although the effect is greatly diminished through sampling in
the stack gases.

Soot formation in flames is a relatively slow process and its kinetics are far from
equilibrium. Therefore, the amount of soot that forms in a diffusion flame depends
critically on the time that is available. A shorter residence time will lead to a reduction in
the amount of soot that forms. Both laminar and turbulent diffusion flames exhibit this
effect. Increasing the flow rate of fuel in a laminar diffusion flame will increase the amount
of soot that forms as a result of the greater length of the flame. Eventually, the flame will
start to emit soot when it reaches its so-called sooting height (35). On the other hand, a
turbulent flame at a fairly high Reynolds number does not change its height as the flow rate
of fuel is increased. Instead, the intensity of the turbulence and the mean velocity increase.
As a result, the rate of mixing of fuel and air increases and less soot forms (36). These
examples serve to demonstrate the impact of residence times or mixing rates on soot
production. Increases in mixing rates within the rice straw flames are manifested as a
reduction in the soot loading.

The magnitudes of the PM emission factors determined here can be compared with those of
Darley (4,5), who was also able to perform direct mass balances for computing the
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emission factor. At similar moisture content (8-10% wet basis), Darley reports three values
for backing fires in rice straw: 0.11% (5), 0.35% (4, fuel bed on a 25° slope), and 0.46%
(4, fuel bed on a 15° slope). The PM emission factor in the 64 tests over all four
configurations of the wind tunnel using the same source of straw for all tests ranged from a
low of 0.45% (CEWF, 3.4 m s'1) to a high of 0.79% (CRNF, 2.2 m s71). The lowest
values here are about the same as the highest values obtained by Darley. Rice straw from
other sources tested at the same moisture and loading rate have subsequently yielded values
as low as 0.2% in the CEWF high wind speed configuration. MMAD found here of
approximately 0.1 pm are similar to those reported for field burns with rice straw (8).
Reasons for the differences between the results reported here and those of Darley are
therefore uncertain, but may be due to differences in the burning conditions, fuel
composition, or sampling technique. Some effects due to differences in burning conditions
have been noted above. Differences due to sampling technique probably exist; the wind
tunnel samples were withdrawn from the stack flow at lower temperatures than Darley
encountered (4,5), and this could affect aerosol particle mass. Influences of physicat and
chemical differences within fuels of the same type have not been explored, and make for
interesting future work.

Conclusions and Recommendations

Average emission factors for particulate matier were found to differ significantly among the
four wind tunnel configurations, ranging from 0.5% for the ceiling extended configuration
with the floor installed and the wind speed over 3 m s-1, 10 0.7% for the ceiling retracted
configuration without the floor and the wind speed at 2 m s1. Significant differences were
observed with the floor installed, which tends to reduce the emission factor, and for the
wind speed, which when increased tends also to reduce the emission factor. The ceiling
position by itself was not found to significandy alter the emission factor. Instead, the effect
of the ceiling position appears to be related to the change in wind speed at the fire. With a
higher wind speed in the ceiling retracted configuration, PM emission factors were
comparable to those obtained with the ceiling extended.

Velocity profiles from tests with low wind speeds and the ceiling retracted are distinctively
different from those of other tests. A region of very low velocity extends upward from the
fuel surface for 100 to 200 mm, and suggests an extremely adverse pressure gradient with
separated flow.
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The gas sampling results did not suggest significant effects of the tunnel floor on the gas
composition near the fuel bed at the front of the flame. Further downstream it is possible
that air flow through the smoldering bed is important. The laser measurements lend
credence to the hypothesis that the wind speed is a dominant parameter in the emission of
particles, especially soot which is an important component of the stack particulate loading.
Estimates of fluid mechanical time scales from velocity measurements support these
observations. Some correlation between wind speed and particulate loading may be
expected on the basis of these resuits. '

Measures of soot volume fraction by laser light extinction were about 10-8 and are at least
an order of magnitude lower than values commonly reported for turbulent flames. The path
length of the light could only be defined in terms of the tunnel width, as the true path length
in the flame could not be determined. The low values of soot volume fraction are indicative
of the unsteadiness of the flames. Trends in soot volume fraction are consistent with PM
measurements in the stack, showing increased levels for the lower wind speed and ceiling
retracted conditions.

Peak temperatures measured in the flames were similar under all configurations although
flame temperature profiles were affected strongly by wind speed. Flames burning under
higher wind speed conditions were bent over and considerably shorter than those burning
under lower speed conditions, especially with the ceiling retracted. Temperature
distributions at the foot of the flames near the fuel surface were bi-modal, with the lower
mode indicating free stream cold air at these positions. Temperature contours down to the
fuel surface obtained in the wind tunnel under the CENF high wind speed configuration
were quite similar to those obtained during an actual field burn in rice straw conducted
under similar conditions of wind speed and direction. The average PM emission factor for
the CENF high wind speed configuration was intermediate to the emission factors of the
CEWF high wind speed and CRNF low wind speed configurations.

Local turbulence intensities in the wind tunnel boundary layer were in the range of those
expected for the field. Measurements just above the fuel surface in the wind tunnel extend
up to about 35% intensity for the CEWF high wind speed configuration, and 65% for the
CRNF low wind speed configuration. Values reported for the field just above plant
canopies range from about 30% to 120%. Estimates of friction velocities and surface
roughness heights computed from a logarithmic law-of-the-wall model for the ceiling
extended configurations and the higher wind speed ceiling retracted configurations seem
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also to compare reasonably well with values reported for the field. Wind tunnel friction
velocities from 0.4 to 1.2 m s°! are somewhat higher than values reported for the lower
atmosphere of 0.2 to 0.4 m s*1. Atmospheric surface roughness heights range from 1.4
mm to 150 mm over open ground and rural terrains. Wind tunnel roughness heights range
from about 20 to 130 mm. The velocity profiles for the low wind speed ceiling retracted
configurations do not fit a logarithmic law-of-the-wall model.

The total variation in average PM emission factor amounts to 35% out of the global mean
for the four configurations. This variation is surprisingly narrow given the distinct
differences in the appearance of the fire under the different configurations. Emission
factors were significantly different, however, and the effect of changing the configuration
with other fuel types was not evaluated. It is recommended that the two configurations
yielding the extremes in PM emission factor (CEWF high wind speed and CRNF low
wind speed) be used in further experiments with spreading fires. The influence of wind
tunnel configuration on particulate matter and other emissions can thereby be explored.
Average values should yield suitable measures of field emission factors for the purposes of
determining offset allowances,
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